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Lessons from History on giving advice

• I will try to avoid giving advice during my 

remarks. 

As the little school girl wrote, "Socrates 

was a wise Greek philosopher who 

walked around giving advice to people. 

They poisoned him."



OutlineOutline

� Big Data optimized system design 

– Power8: A high performance system backbone 

– Power Management & Reduction

– Design methodology to bridge power 

performance gap

� Whats Next?

– SW driven HW Acceleration in the era of 

heterogeneous computing

– Commercial Workload Case studies



““RecentRecent”” POWER HistoryPOWER History
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POWER8 Chip OverviewPOWER8 Chip Overview

� Up to 2.5x socket perf vs. P7+ 

� 649mm2 die size, 4.2B transistors

� 12 high-performance cores

� Large Caches
– L2:  512KB private SRAM per core

– L3:  96MB shared eDRAM w/ 8MB “fast access” partition per core
– L4:  Up to 128MB, located on memory buffer chip

� 4 High Speed I/O interfaces
– Memory, On-Node SMP, Off-Node SMP, PCIe Gen3

� CAPI:  open infrastructure for off-chip, memory-coherent accelerators
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POWER8 TechnologyPOWER8 Technology

� 22nm SOI

� 15 layer BEOL:

5-1x, 2-2x, 3-4x, 3-8x, 2-UTM

� 3-Vt thin-oxide logic transistors for 
power optimization

� Multiple thick-oxide transistors (for 
I/O and analog support)

� 3 app-optimized SRAM cells:
– 0.160um2 6T  perf-oriented

– 0.144um2 6T  perf-density balance

for directories/L2

– 0.192um2 8T  multi-port

� Technology eDRAM cell:  0.026um2 2-2x

3-4x

UTM

5-1x

3-8x

UTM



POWER8 Core: POWER8 Core: Back bone of big data computing systemBack bone of big data computing system

VSUVSU
FXUFXU

IFUIFU

DFUDFU

ISUISU

Enhanced Micro Architecture

� Increased Execution Bandwidth, +4 units

� SMT 8

� 64KB L1 D-Cache, 32KB 8-way I-Cache

� 64B Cache Reload

� 4KB TLB

� Transactional Memory

Arrays/Register Files
� 2 CAM & 6 SRAM Topologies

� 31 Multi-ported Register Files for Queuing 
& Architected Registers

Power Management
� Power Gating & Voltage Regulation in 5 

columns

� 1 Thermal Diode

� 3 Digital Thermal Sensors

� 3 Critical Path Monitors

PCPC

PCPC

LSULSU



Combined I/O Bandwidth = 7.6Tb/sCombined I/O Bandwidth = 7.6Tb/s
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Putting it all together with the memory links, on- and off-node SMP links 
as well as PCIe, at 7.6Tb/s of chip I/O bandwidth



SRAM Power SavingsSRAM Power Savings

� Global bitline restored to reduced voltage 
VDD-VT

– 20% AC power savings

� Smart way select prediction to reduce 
restore power

� Early and late wordline gating features

� Wordline driver header devices

– 16% DC power savings

� Output socket buffer concept: driver size 
tuned load of each instance 
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Nest / Fabric Bus
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Clock Topology:  29 Domains

Resonant clocking reduced chip power by 4%, as well as improving clock jitter in those 

meshes, which translates into a significant frequency boost.



Power Regulation and Reduction:Power Regulation and Reduction:

Exploiting processor inactivityExploiting processor inactivity
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(Cache Misses)
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(OS Time Slices)

Hours
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� Power consumption varies at every time scale

� Key = sense and act in time
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POWER8 OnPOWER8 On--Chip Controller (OCC)Chip Controller (OCC)

Not Real-time
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…
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Real-time Updates

�Allows for fast, scalable monitoring and response (ns timescale)

- Independent of Hypervisor or Guest OS(s)
OR

- In conjunction with Hypervisor interaction with Guest OS(s)
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Faster Power Management  == ideal for cloud! Faster Power Management  == ideal for cloud! 
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� OCC = full POWERPC 405 core with 512KB private memory
� Uses continuous running, real-time OS
� Monitors workload activity, chip temperature and current
� Adjusts frequency and voltage to optimize performance 

within system power and thermal constraints 

PLL
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POWER8 Voltage RegionsPOWER8 Voltage Regions
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OnOn--Die Per Core Power gatingDie Per Core Power gating

L3 mixed
VDD & VCS

Core/L2 mixed
VDD & VCS
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1000X leakage 
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OnOn--Die Per Core Voltage RegulationDie Per Core Voltage Regulation

� Each of the 12 core/cache partitions can adapt voltage to 
optimize power vs. performance demands
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On Chip Voltage Regulation BenefitOn Chip Voltage Regulation Benefit

� DVFS results vs DFS:  ~33% power savings @ 62% freq

Bypass Mode

Regulated Mode

1.0

Vin=1.1v



Power analysis & improvementsPower analysis & improvements

� Design effort = 17% savings of chip total power



Large Block Structured SynthesisLarge Block Structured Synthesis

� Enhanced process which 
included:
– Structured dataflow

– Congestion-aware stdcell
placement

– Embedded “hard” IP (e.g. 
arrays, regfiles, complex 
custom cells)

� 30% fewer unique blocks vs. 
POWER7

� Improvements in block power 
and total design area
– 15% area reduction

� Gate-level design TAT sign-
off improvement of 3-10x

IFU

VSU



Design Efficiency for Power/Performance
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� Automated Datapath techniques achieve significant wirelength and 
timing improvement over conventional synthesis

d esign  vers ion t iming wire length area
b) designer la tch prep lacement 28% 30% 5%

c) automated  latch p lacement 16% 27% 2%

a) conventional synthesis b) designer latch 

preplacement

c) automated latch

placement

Improvements over conventional synthesis



The tailored macro power 
optimization methodology 

applies high exploration effort 

early during the synthesis step 
as well as final exploration 

during post-route tuning. 

Figure from [2].

1) Synthesis

X scenarios explore the 

design space both in 

parallel and iteratively 

2) Routing

Y top synthesis scenarios 

are routed

3) Tuning

Z top routed scenarios 

are tuned

post-synthesis

scenario pruning

post-routing

scenario pruning

4) Top tuned scenario

selected for RIT

I. Order macros based on expected power savings ROI

Initial Design 

Point (control)

II. Process macros starting from highest ROI, continue down the 

macro list as design effort allows or ROI becomes unattractive

post-tuning

scenario pruning

Exploration Design Points

Design methodology to bridge the high performance 

and low power gap



High Performance:  IFU and VSU as LBSSHigh Performance:  IFU and VSU as LBSS

VSU:  697K gates, 723K nets
� 20 embedded array/register files
� hierarchical embedded synthesis

Preplaced IP

Structured

dataflow

IFU:  580K gates, 628K nets
� 37 embedded array/register files



P8 Core: A finely tuned power performance compute engine

IFU

VSU



Whats Next?

� Technology trends are motivating increasing focus on acceleration and 

specialization as more impactful means to increase system value 

� Targeted specialization can result in dramatic improvements – 10X and more 

in both performance and power efficiency

� A broad understanding of workloads, system structures, and algorithms is 

needed to determine what to accelerate / specialize, and how

– Via SW;  via HW;  via SW+HW

– Many choices; co-optimization necessary

� A methodology for software and system co-optimization, based on 

inventing new software algorithms, that have strong affinity to hardware 
acceleration

A new dimension to algorithm effectiveness: hardware mapping efficiency.



Concluding Remarks

�Life as usual will continue, only with more sweat and blood..
–Technology becomes much harder
–Design effort enormous.. Marching onwards.. P9..
–Power increasingly becoming first order metrics at system 
level and percolates down to chip and then to core, and 
finally design methodology

�Specialization will become increasingly relevant esp. as 
power efficiency becomes more important.

–For commercial workloads, must contend with massive 
scaling of the CPUs and algorithmic paradigms at both 
SMP and cloud computing level. 

�Where POWER is critical and performance a key 
requirement, then specialization will be indispensable.



Lunch Efficiency

I hope you enjoyed the talk and if you did not, I hope you had a good nap.



END


