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Agenda

• Power-efficient computing in the past decade

• Revolutionary paradigm shift in applications

• Thoughts on the power-efficient computing in the next decade



Power-efficient Computing in the Past Decade

• Giving up a small level of 
performance saves a lot of 
power

• For single thread
• Clock frequency

• Operation latencies
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CPUs: Latency Oriented Design 

▪ High clock frequency

▪ Large caches
• Convert long latency memory accesses 

to short latency cache accesses

▪ Sophisticated control
• Branch prediction for reduced branch 

latency

• Data forwarding for reduced data 
latency

▪ Powerful ALU
• Reduced operation latency
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GPUs: Throughput Oriented Design

▪ Moderate clock frequency

▪ Small caches
• To boost memory throughput

▪ Simple control
• No branch prediction
• No data forwarding

▪ Energy efficient ALUs
• Many, long latency but heavily pipelined 

for high throughput

▪ Require massive number of threads 
to tolerate latencies

DRAM

GPU



Applications Benefit from Both CPU and GPU 

▪ CPUs for sequential parts where 
latency matters
• CPUs can be 10+X faster than GPUs 

for sequential code

▪ GPUs for parallel parts where 
throughput wins
• GPUs can be 10+X faster than CPUs 

for parallel code

Amdahl’s Law is alive and well! 



Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch12.5 PF
1.6 PB DRAM

$250M

49,504 CPUs -- 4,224 GPUs



Current State of 
Heterogeneous Computing

• Throughput computing using GPUs have resulted in 2-5X end-to-end 
application-level performance improvement
• A ten-year journey – first CUDA GPUs (G80) came out in 2007

• GPUs, big data and deep learning have formed a positive spiral for 
the industry

• GPU computing has so far had narrow but deep impact on 
applications (C-FAR)
• Data movement overhead and small GPU memory

• Unified memory, HBM, NVLink, and HSA-style systems

• Low-level programming interfaces with poor performance 
portability
• C++/Python style programming and software synthesis 

systems



Hierarchical Compute Organization of Devices

CPU

1. Process

2. Thread (vector-capable)

3. Vector Lane

4. Instruction-level Parallelism

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism



Hierarchical Programming of CPUs

CPU

1. Process

2. Thread (vector-capable)

3. Vector Lane

4. Instruction-level Parallelism

nt = omp_get_num_threads();
tile = (len + nt – 1)/nt;
#pragma omp parallel
{ 

j = omp_get_thread_num();
accum = 0;
#pragma unroll
for(int i = 0; i < tile; ++i) {

accum += in[j*tile + i];
}
partial[j] = accum;

}
sum = 0;
for(int j = 0; j < nt; ++j) {

sum += partial[j];
}
return sum;



Hierarchical Programming of GPUs

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism

tile = (len + gridDim.x – 1)/gridDim.x;
sub_tile = (tile + blockDim.x – 1)/blockDim.x;
accum = 0
#pragma unroll
for(unsigned i = 0; i < sub_tile; ++i) {

accum += in[blockIdx.x*tile
+ i*blockDim.x + threadIdx.x];

}
tmp[threadIdx.x] = accum; 
__syncthreads();
for(unsigned s=1; s<blockDim.x; s *= 2) {

if(id >= s)
tmp[threadIdx.x] +=

tmp[threadIdx.x - s];
__syncthreads();

}
partial[blockIdx.x] = tmp[blockDim.x-1];
return; // Launch new kernel to sum up partial



Tangram: Codelet-based Programming Model
__codelet
int sum(const Array<1,int> in) {

unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {

accum += in[i];
}
return accum;

}
(a) Atomic autonomous codelet

__codelet __tag(asso_tiled) 
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum( map( sum, partition(in,

p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1))));
}

__codelet __coop __tag(kog)
int sum(const Array<1,int> in) {

__shared int tmp[coopDim()];        
unsigned len = in.size();
unsigned id = coopIdx();
tmp[id] = (id < len)? in[id] : 0;
for(unsigned s=1; s<coopDim(); s *= 2) {

if(id >= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

}
(b) Atomic cooperative codelet

(c) Compound codelet using adjacent tiling 

(d) Compound codelet using strided tiling

__codelet __tag(stride_tiled) 
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum( map( sum, partition(in, 

p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1))));
}
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A Revolutionary Paradigm Shift
20th Century

▪ Small mask patterns

▪ Electronic microscope and Crystallography 
with computational image processing

▪ Anatomic imaging with computational 
image processing

▪ Teleconference

▪ GPS 

21st Century

▪ Optical proximity correction

▪ Computational microscope with initial 
conditions from Crystallography 

▪ Metabolic imaging measures disease 
progress before visible anatomic change

▪ Cognitive Immersive Room

▪ Self-driving cars



How are applications changing?

• Applications that use large, accurate first-principle-based models
• Problems that we know how to solve accurately but choose not to because it would 

be “too expensive”
• High-valued applications with approximations that cause inaccuracies and lost 

opportunities
• Medicate imaging, remote sensing, earthquake modeling, weather modeling, 

astrophysics modeling, precision digital manufacturing, combustion modeling, ….

• Applications that we have failed to program
• Problems that we just don’t know how to solve
• High-valued applications with no effective computational methods
• Computer vision, natural language dialogs, document compression, stock trading, 

fraud detection, …
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IBM-Illinois C3SR faculties & students (Est. 9/2016)
Wen-mei Hwu (Illinois) and Jinjun-Xiong (IBM) Co-directors

Suma Bhat Julia HockenmaierMinh Do Deming Chen Wen-mei Hwu Nam Sung Kim Dan Roth Lav VarshneyRakesh Nagi

…



The Three Pillars of C3SR:

• Creative experiential learning advisor (CELA) as a grand 
challenge use case for cognitive capabilities

• Cognitive application builder (CAB) to make the underlying 
heterogeneous infrastructure easy to consume for cognitive 
application developers

• Cognitive systems innovations (Erudite) for workload 
acceleration, including Near Memory Acceleration (NMA)



Problem Statement for the Erudite Project

• Latency and bandwidth limitations on accessing massive data sets
• Sweeping through large data sets brings systems to their knees

• Low data reuse creates unnecessary traffic through the memory hierarchy

• Sustained performance < 1% of peak for memory bound applications

• Large software overhead for data access
• File system overhead and bottleneck

• Message passing serialization/deserialization and layers of constructors

• Excessive data copying between memory address spaces and subspaces



A Simplified Heterogeneous System 
(IBM Minsky with NVIDIA Pascal GPUs)

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM 
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM 
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s



Ideal GPU Computation Patterns

▪ Each memory operand should be reused ~50 times among threads 
and thread blocks

▪ Data should fit into GPU Memory
• Or reused many times when transferred to the GPU memory

▪ Data should be accessed with spatial locality



Example: Direct vs. Iterative Solvers

Direct Solvers
• Good Locality

• Data reuse through tiling

• Sparsity
• Too many fill-ins, data explosion

• Stability
• Pivoting restricts parallelism

Iterative Solvers
• Poor Locality

• Multiple sweeps through matrix

• Good with Sparsity
• No fill-ins during solution time

• Stability
• Convergence varies

• Preconditioning may enlarge 
matrix



Iterative Solver Example –
If matrix fits into GPU Memory

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM 
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM 
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

~100 GFLOPS
Sustained



Iterative Solver Example –
If matrix fits into Host Memory

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM 
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM 
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

~10 GFLOPS
Sustained

Tremendous loss of both 
performance and energy efficiency 



Iterative Solver Example –
If matrix has to be accessed from storage

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM 
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM 
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

< 1 GFLOPS
Sustained



Erudite Project Goals

• To achieve > 100x performance/Watt for data-intensive cognitive 
computing applications
• Collaborative heterogeneous execution of CPU, GPU, and NMA
• Elimination of file-system software overhead for engaging large data sets
• Placement of computation appropriately in the memory and storage hierarchy

• To drastically improve the efficiency of distributed cognitive software 
architectures
• Highly optimized kernel synthesis for heterogeneous computing components
• Optimized scheduling of workflows for improved performance and efficiency 
• Elimination of software serialization/deserialization overhead in communication
• Elimination of software overhead in processing traditional network messages



Erudite Step 1: 
remove file system from data access path

CPU Host
(~1 TFLOPS)

DDR/Flash
Memory System

(~10 TBs)

GPU 1
(~10 TFLOPS)

HBM 
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM 
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s



Erudite Step 2: 
place NMA compute inside memory system

CPU Host
(~1 TFLOPS)

GPU 1
(~10 TFLOPS)

HBM 
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM 
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s100+ GFLOPS 
NMA Compute 
Proportional to 
data capacity

DDR/Flash
Memory System

(~10 TBs)



Erudite Memory Board 1.0

▪ Develop a principled 
methodology for acceleration 
• HLS (high-level synthesis) for FPGA 

based on FCUDA and TANGRAM

• Hardware/Software partitioning for 
heterogeneous systems

• Optimized for cognitive workload

To Power CPU

DMI Logic Accelerator Management Logic 

FLASH/DRAM Channel FLASH/DRAM Channel

FPGA
Interconnect Fabric

FLASH(/DRAM?) 
NVDIMM-F

with built-in NMA

FLASH(/DRAM?) 
NVDIMM-F

with built-in NMA



Erudite Step 3
collaborative heterogeneous computing (Chai) 

…

…

data-parallel tasks
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Erudite Target Computation Types

• Large iterative solvers
• Equations, constraints, etc.

• Low-complexity solver algorithms
• Multi-level Fast Multipole Methods, etc.

• Graph analytics
• Inference, search, counting, etc.

• …



Longer Term Power-Efficiency Agenda

• Package-level integration
• Post-Moore scaling
• Optical interconnects in package?
• Collaboration support for heterogeneous 

devices

• System software (r)evolution
• Persistent objects for multi-language 

environments
• Directory and mapping of very large 

persistent objects

• Power consumption in memory
• Much higher memory-level parallelism 

needed for SSD-based main-memories
• Latency vs. throughput oriented memories
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Conclusion and Outlook

• Heterogeneous computing for power-efficiency
• Latency vs. throughput compute designs have empowered application paradigm shift
• Latency vs. throughput memory designs will be the next focus

• Drivers for low-power systems
• Large-scale inverse problems with natural data inputs
• Machine-learning-based applications

• Erudite cognitive computing systems project
• Removing file-system bottleneck from access paths to large data sets 
• Placing compute into the appropriate levels of the memory system hierarchy 
• Memory parallelism (data bandwidth) proportional to the data capacity
• 100x improvement in the power-efficiency in emerging applications



Thank you!


