
Architecture and Software for Emerging Low-
Power Systems

Wen-mei Hwu

Professor and Sanders-AMD Chair, ECE, NCSA, CS

University of Illinois at Urbana-Champaign

with

Jinjun Xiong (IBM), Nam Sung Kim, Deming Chen,

Izzat El Hajj, Abdul Dakkak, Liwen Chang, Simon Garcia, and Carl Pearson

Agenda

• Power-efficient computing in the past decade

• Revolutionary paradigm shift in applications

• Thoughts on the power-efficient computing in the next decade

Power-efficient Computing in the Past Decade

• Giving up a small level of
performance saves a lot of
power

• For single thread
• Clock frequency

• Operation latencies

W
at

ts
/P

er
fo

rm
an

ce

Performance

0.01

0.1

1.0

10.0

0.01 0.1 1.0 10.0

CPUs: Latency Oriented Design

▪ High clock frequency

▪ Large caches
• Convert long latency memory accesses

to short latency cache accesses

▪ Sophisticated control
• Branch prediction for reduced branch

latency

• Data forwarding for reduced data
latency

▪ Powerful ALU
• Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

GPUs: Throughput Oriented Design

▪ Moderate clock frequency

▪ Small caches
• To boost memory throughput

▪ Simple control
• No branch prediction
• No data forwarding

▪ Energy efficient ALUs
• Many, long latency but heavily pipelined

for high throughput

▪ Require massive number of threads
to tolerate latencies

DRAM

GPU

Applications Benefit from Both CPU and GPU

▪ CPUs for sequential parts where
latency matters
• CPUs can be 10+X faster than GPUs

for sequential code

▪ GPUs for parallel parts where
throughput wins
• GPUs can be 10+X faster than CPUs

for parallel code

Amdahl’s Law is alive and well!

Blue Waters Computing System
Operational at Illinois since 3/2013

Sonexion: 26 PBs

>1 TB/sec

100 GB/sec

10/40/100 Gb
Ethernet Switch

Spectra Logic: 300 PBs

120+ Gb/sec

WAN

IB Switch12.5 PF
1.6 PB DRAM

$250M

49,504 CPUs -- 4,224 GPUs

Current State of
Heterogeneous Computing

• Throughput computing using GPUs have resulted in 2-5X end-to-end
application-level performance improvement
• A ten-year journey – first CUDA GPUs (G80) came out in 2007

• GPUs, big data and deep learning have formed a positive spiral for
the industry

• GPU computing has so far had narrow but deep impact on
applications (C-FAR)
• Data movement overhead and small GPU memory

• Unified memory, HBM, NVLink, and HSA-style systems

• Low-level programming interfaces with poor performance
portability
• C++/Python style programming and software synthesis

systems

Hierarchical Compute Organization of Devices

CPU

1. Process

2. Thread (vector-capable)

3. Vector Lane

4. Instruction-level Parallelism

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism

Hierarchical Programming of CPUs

CPU

1. Process

2. Thread (vector-capable)

3. Vector Lane

4. Instruction-level Parallelism

nt = omp_get_num_threads();
tile = (len + nt – 1)/nt;
#pragma omp parallel
{

j = omp_get_thread_num();
accum = 0;
#pragma unroll
for(int i = 0; i < tile; ++i) {

accum += in[j*tile + i];
}
partial[j] = accum;

}
sum = 0;
for(int j = 0; j < nt; ++j) {

sum += partial[j];
}
return sum;

Hierarchical Programming of GPUs

GPU

1. Grid

2. Block

3. Warp

4. Thread

5. Instruction-level Parallelism

tile = (len + gridDim.x – 1)/gridDim.x;
sub_tile = (tile + blockDim.x – 1)/blockDim.x;
accum = 0
#pragma unroll
for(unsigned i = 0; i < sub_tile; ++i) {

accum += in[blockIdx.x*tile
+ i*blockDim.x + threadIdx.x];

}
tmp[threadIdx.x] = accum;
__syncthreads();
for(unsigned s=1; s<blockDim.x; s *= 2) {

if(id >= s)
tmp[threadIdx.x] +=

tmp[threadIdx.x - s];
__syncthreads();

}
partial[blockIdx.x] = tmp[blockDim.x-1];
return; // Launch new kernel to sum up partial

Tangram: Codelet-based Programming Model
__codelet
int sum(const Array<1,int> in) {

unsigned len = in.size();
int accum = 0;
for(unsigned i=0; i < len; ++i) {

accum += in[i];
}
return accum;

}
(a) Atomic autonomous codelet

__codelet __tag(asso_tiled)
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum(map(sum, partition(in,

p,sequence(0,tile,len),sequence(1),sequence(tile,tile,len+1))));
}

__codelet __coop __tag(kog)
int sum(const Array<1,int> in) {

__shared int tmp[coopDim()];
unsigned len = in.size();
unsigned id = coopIdx();
tmp[id] = (id < len)? in[id] : 0;
for(unsigned s=1; s<coopDim(); s *= 2) {

if(id >= s)
tmp[id] += tmp[id - s];

}
return tmp[coopDim()-1];

}
(b) Atomic cooperative codelet

(c) Compound codelet using adjacent tiling

(d) Compound codelet using strided tiling

__codelet __tag(stride_tiled)
int sum(const Array<1,int> in) {

__tunable unsigned p;
unsigned len = in.size();
unsigned tile = (len+p-1)/p;
return sum(map(sum, partition(in,

p,sequence(0,1,p),sequence(p),sequence((p-1)*tile,1,len+1))));
}

cb

?

pc

? ? ?

?

pd

? ? ?

ca

Agenda

• Power-efficient computing in the past decade

• Revolutionary paradigm shift in applications

• Thoughts on the power-efficient computing in the next decade

A Revolutionary Paradigm Shift
20th Century

▪ Small mask patterns

▪ Electronic microscope and Crystallography
with computational image processing

▪ Anatomic imaging with computational
image processing

▪ Teleconference

▪ GPS

21st Century

▪ Optical proximity correction

▪ Computational microscope with initial
conditions from Crystallography

▪ Metabolic imaging measures disease
progress before visible anatomic change

▪ Cognitive Immersive Room

▪ Self-driving cars

How are applications changing?

• Applications that use large, accurate first-principle-based models
• Problems that we know how to solve accurately but choose not to because it would

be “too expensive”
• High-valued applications with approximations that cause inaccuracies and lost

opportunities
• Medicate imaging, remote sensing, earthquake modeling, weather modeling,

astrophysics modeling, precision digital manufacturing, combustion modeling, ….

• Applications that we have failed to program
• Problems that we just don’t know how to solve
• High-valued applications with no effective computational methods
• Computer vision, natural language dialogs, document compression, stock trading,

fraud detection, …

Agenda

• Power-efficient computing in the past decade

• Revolutionary paradigm shift in applications

• Thoughts on the power-efficient computing in the next decade

IBM-Illinois C3SR faculties & students (Est. 9/2016)
Wen-mei Hwu (Illinois) and Jinjun-Xiong (IBM) Co-directors

Suma Bhat Julia HockenmaierMinh Do Deming Chen Wen-mei Hwu Nam Sung Kim Dan Roth Lav VarshneyRakesh Nagi

…

The Three Pillars of C3SR:

• Creative experiential learning advisor (CELA) as a grand
challenge use case for cognitive capabilities

• Cognitive application builder (CAB) to make the underlying
heterogeneous infrastructure easy to consume for cognitive
application developers

• Cognitive systems innovations (Erudite) for workload
acceleration, including Near Memory Acceleration (NMA)

Problem Statement for the Erudite Project

• Latency and bandwidth limitations on accessing massive data sets
• Sweeping through large data sets brings systems to their knees

• Low data reuse creates unnecessary traffic through the memory hierarchy

• Sustained performance < 1% of peak for memory bound applications

• Large software overhead for data access
• File system overhead and bottleneck

• Message passing serialization/deserialization and layers of constructors

• Excessive data copying between memory address spaces and subspaces

A Simplified Heterogeneous System
(IBM Minsky with NVIDIA Pascal GPUs)

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

Ideal GPU Computation Patterns

▪ Each memory operand should be reused ~50 times among threads
and thread blocks

▪ Data should fit into GPU Memory
• Or reused many times when transferred to the GPU memory

▪ Data should be accessed with spatial locality

Example: Direct vs. Iterative Solvers

Direct Solvers
• Good Locality

• Data reuse through tiling

• Sparsity
• Too many fill-ins, data explosion

• Stability
• Pivoting restricts parallelism

Iterative Solvers
• Poor Locality

• Multiple sweeps through matrix

• Good with Sparsity
• No fill-ins during solution time

• Stability
• Convergence varies

• Preconditioning may enlarge
matrix

Iterative Solver Example –
If matrix fits into GPU Memory

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

~100 GFLOPS
Sustained

Iterative Solver Example –
If matrix fits into Host Memory

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

~10 GFLOPS
Sustained

Tremendous loss of both
performance and energy efficiency

Iterative Solver Example –
If matrix has to be accessed from storage

CPU Host
(~1 TFLOPS)

DDR Memory System
(~100 GBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

< 1 GFLOPS
Sustained

Erudite Project Goals

• To achieve > 100x performance/Watt for data-intensive cognitive
computing applications
• Collaborative heterogeneous execution of CPU, GPU, and NMA
• Elimination of file-system software overhead for engaging large data sets
• Placement of computation appropriately in the memory and storage hierarchy

• To drastically improve the efficiency of distributed cognitive software
architectures
• Highly optimized kernel synthesis for heterogeneous computing components
• Optimized scheduling of workflows for improved performance and efficiency
• Elimination of software serialization/deserialization overhead in communication
• Elimination of software overhead in processing traditional network messages

Erudite Step 1:
remove file system from data access path

CPU Host
(~1 TFLOPS)

DDR/Flash
Memory System

(~10 TBs)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s

Storage
(~10 TBs)

10 GB/s

Erudite Step 2:
place NMA compute inside memory system

CPU Host
(~1 TFLOPS)

GPU 1
(~10 TFLOPS)

HBM
(~10 GBs)

GPU 2
(~10 TFOPS)

HBM
(~10 GBs)

80 GB/s

80 GB/s
80 GB/s

100 GB/s

700 GB/s

700 GB/s100+ GFLOPS
NMA Compute
Proportional to
data capacity

DDR/Flash
Memory System

(~10 TBs)

Erudite Memory Board 1.0

▪ Develop a principled
methodology for acceleration
• HLS (high-level synthesis) for FPGA

based on FCUDA and TANGRAM

• Hardware/Software partitioning for
heterogeneous systems

• Optimized for cognitive workload

To Power CPU

DMI Logic Accelerator Management Logic

FLASH/DRAM Channel FLASH/DRAM Channel

FPGA
Interconnect Fabric

FLASH(/DRAM?)
NVDIMM-F

with built-in NMA

FLASH(/DRAM?)
NVDIMM-F

with built-in NMA

Erudite Step 3
collaborative heterogeneous computing (Chai)

…

…

data-parallel tasks

se
q

u
en

ti
al

 s
u

b
-t

as
ks

co
ar

se
-g

ra
in

ed

sy
n

ch
ro

n
iz

at
io

n
Program Structure

Fine-grained Task Partitioning

Device 1 Device 2

…

…

…
… …

…

Erudite Target Computation Types

• Large iterative solvers
• Equations, constraints, etc.

• Low-complexity solver algorithms
• Multi-level Fast Multipole Methods, etc.

• Graph analytics
• Inference, search, counting, etc.

• …

Longer Term Power-Efficiency Agenda

• Package-level integration
• Post-Moore scaling
• Optical interconnects in package?
• Collaboration support for heterogeneous

devices

• System software (r)evolution
• Persistent objects for multi-language

environments
• Directory and mapping of very large

persistent objects

• Power consumption in memory
• Much higher memory-level parallelism

needed for SSD-based main-memories
• Latency vs. throughput oriented memories

0

2

4

0 10 20

En
er

gy
 E

ff
ic

ie
n

cy

(p
J/

b
it

)

Distance (mm)

Electrical

Conclusion and Outlook

• Heterogeneous computing for power-efficiency
• Latency vs. throughput compute designs have empowered application paradigm shift
• Latency vs. throughput memory designs will be the next focus

• Drivers for low-power systems
• Large-scale inverse problems with natural data inputs
• Machine-learning-based applications

• Erudite cognitive computing systems project
• Removing file-system bottleneck from access paths to large data sets
• Placing compute into the appropriate levels of the memory system hierarchy
• Memory parallelism (data bandwidth) proportional to the data capacity
• 100x improvement in the power-efficiency in emerging applications

Thank you!

