Low Power Design

From Technology Challenges to Great Products

Barry Dennington
Snr VP
CTO/SoC Design Engineering
October 5, 2006
Agenda

Is power really a problem?

Are there viable solutions? What are the challenges to use them?

Designing low-power products

Conclusions
Is power really a problem?
Scaling increases power more than expected

- CMOS 65nm technology represents a real challenge for any sort of voltage and frequency scaling
 - Supply voltages stable at 1.2v

- Starting from 120nm, each new process has inherently higher dynamic and leakage current density with minimal speed advantage
 - 90nm to 65nm: same dynamic power and ~5% higher leakage/mm²

- Low cost continues to drive higher levels of integration

- Low cost technological breakthroughs to keep power under control are getting very scarce
 - Examples: changing device or tuning the process to the application
Modern SoC’s demand more power

- **Logic:**
 - Static power is growing really fast
 - Dynamic power kind of grows

- **Memory**
 - Static power is growing really fast
 - Dynamic power kind of grows

- **Overall power is dramatically increasing**

ISLPED Keynote, B. Dennington, October 2006
But, do we need to bother with power?

- The **mobile device** consumer demands more features and extended battery life at a lower cost
 - About 70% of users rate longer talk and stand-by time as primary mobile phone feature
 - Top 3G requirement for operators is power efficiency

- Customers want **smaller, sleeker mobile devices**
 - Requires this high levels of Silicon integration in advanced processes, but …
 - Advanced processes have inherently higher leakage current

- Therefore, **we do need to bother with reducing power!**
Increasing the Challenge; conflicting requirements

- Low cost is always critical in the consumer market
 - Cannot afford exotic packaging to solve power consumption issues
 - Products must consume less power

- Home consumers want products that enhance the user experience
 - Reduced noise (no fans)
 - Environmental issues

- When docking mobile devices for in-home use, consumers expect the same performance as tethered products
 - Relief from device battery life constraints
 - Products must be able to deliver high performance when docked
Thus, is power really a problem?

Yes

Power is a problem

& the user needs increase the challenge !!!
What can we do?
An holistic approach for a pervasive problem

- Low Power requires an **holistic approach** across many areas
 - **System solutions**: Software power management control, OS and Firmware, instruction set extensions, power management devices
 - **SoC design technologies**: Optimized processors, voltage and frequency scaling, design architectures, tools and flows, quality of service
 - **Low-power building blocks**: Ultra low power processes, low power IP, advanced packaging strategies

- A product conception and design team need **expertise and solutions** in all these areas

- Each partner in the production/supply chains need **expertise and solutions** in all these areas

- Unfortunately, **low-power solutions** normally conflict with the low-cost requirement
Holistic approach: system first

Identify where to act !!!

Understand the trade-offs

Power [rel] vs. Application DataRate[kbps] for Different Video Sources

- HDD
- 802.11b
- UWB

ISLPED Keynote, B. Dennington, October 2006
Holistic approach: define the problem

\[P = (1-AF)P_{\text{idle}} + AF \cdot P_{\text{dynamic}} \]

- Optimization space
- Application dependent !!!
Holistic approach: AF < 50%

- The system is mostly idle. Thus, minimize stand-by power!
 - For example: pagers and mobile phones.

- Minimize software activity in stand-by
 - Make stand-by a real stand-by

- **Switch off power** from unused modules, ICs and cores
 - Use MSV or similar techniques

- Use high Vt to minimize I_{off}
 - Minimize the intrinsic leakage

- Choose a process with a **high $I_{\text{on}}/I_{\text{off}}$ ratio**
 - Basically any currently named Low Power process should do
Holistic approach: AF > 50%

- The system is mostly active. Thus, minimize dynamic power!
 - For example: DVD players, Sony PSP, etc.

- Use Software Power Manager to use just-enough performance and power
 - Do not waste performance when not needed.

- Make your system adaptive (e.g. voltage/frequency scaling) according to the nature of your application
 - Use all the time every task has to complete.

- Choose low-power IOs, memories, libraries, etc.

- Use a multiple-Vt design style and clock gating.

- Choose a process with a low I_{on}/I_{off} ratio
 - This is not what is typically called an LP process!!!
Holistic approach: AF ~ 50%

- The system behavior is not constant. It’s the low power nightmare!
 - For example: a pocket PC or a Smartphone (used as such)

- Make your system really adaptable using aggressive voltage/frequency scaling, back biasing and a process with tunable I_{on}/I_{off} ratio coupled with Software Power Management wherever possible!

- Use prediction of the system loading to better tune it.

- Final power budget will be worse when comparing the same function in such a system with respect to the previous two cases!!!
Holistic approach: solution space

- Tuneable I_{on}/I_{off} processes
- Tuneable multi-process SiP
- System & Software Power Management
- Top-Bottom Power Estimation Flow
- Dynamic Voltage/Frequency Scaling
- Multiple Supply Voltage / Power gating
- Body-biasing technology
- Multiple Vt design
- Clock gating

Optimize system and software for minimum power consumption

Optimize design for both dynamic and stand-by power

Reduce cost & improve scalability
Holistic approach: design technologies?

Logic is “Connected”

- Verification
- Synthesis
- Test
- Libraries
- IP
- P+R
- IP
- P+R

Can be Automated

Power is Not “Connected”

- Verification
- Synthesis
- Test
- Libraries
- IP

Very Difficult to Automate

17

ISLPED Keynote, B. Dennington, October 2006
Holistic approach needs co-operation!

Is this an opportunity for collaboration or an area in which to compete?

No one company can do it alone
Low-power design: eChip
Starting from the system issues

- CPU 23%
- LCD 16%
- DC/DC 13%
- Other 31%
- Memory 17%

Low Power DDR memory

LCD backlight dimming

Voltage/Frequency Scaling

Hard disk Spin down timer

ISLPED Keynote, B. Dennington, October 2006
Power savings are achieved by executing a workload at a lower frequency.

How to predict the required performance in advance?

100% CPU usage
50% CPU usage, MSV
50% CPU usage, DVFS

Power

Time

Performance

Full speed

Energy used

Stand-by power

Low f,V

Optimal!!

ISLPED Keynote, B. Dennington, October 2006
eChip: Block diagram

Main facts:
0.065um
Taped-out in 2005
Linux-based system
eChip: Example of MPEG4 operations

[Graph showing CPU usage, DVFS level, and Simulated workload over time.]

Average power reduction of 30%
Designing low-power products
Implementation Example

- **6.8M Gates + Analogue**
 - Including memories and macros
- **Aggressive die-size target**
 - 43mm² in 90nm
- **110/220 MHz target speed**
- **Low power**
 - Dynamic and Leakage
- **Multiple 3rd Party IP**
 - Including different graphics IP

- **Reduced power consumption up to 35%**
Implementation Example 2

- This Media Processor is a complete Audio/Video/Graphics system on a chip capable of high quality software video, audio signal processing, as well as general purpose control processing.

- The architecture is memory centric, as every data communication occurs through writes and reads to background memory. The SoC is therefore build around the central data bus, the main memory interface, and the background memory.
Implementation Example 2

- Original design based on fixed supply voltages but suited for voltage/frequency scaling.

- Optimisation step includes:
 - Partitioning in voltage domains
 - Closed-loop voltage/frequency scaling based on on-chip activity monitors and off-chip voltage regulators
 - Closed-loop process spread control.
 - Adaptive Back Biasing.

- As reference: “ideal case” assumed when we can scale voltage/frequency irrespective of the use cases.
Implementation Example 2

![Bar chart showing power consumption for different formats: Mpeg4, Mpeg2, and MP3. The chart indicates the following savings:
- Mpeg4: Original vs Optimized, saving 23%.
- Mpeg2: Ideal min power, saving 39%.
- MP3: Original vs Ideal min power, saving 31%.]

ISLPED Keynote, B. Dennington, October 2006
Conclusions
Power is a pervasive problem

- Power is a problem due to technology scaling coupled with an increasing integration of features on new products, which are expected to run as usual on our old batteries for the usual low cost.

- Designing for low power affects all parts of the product conception and design cycle. Design teams need experience in low-power design.

- Cost of low-power need to be well explained and (maybe) accepted.

- Low-power requires co-operation in the industry, nobody can do it alone!
Thank you for your attention