

Today's talk

Introduction (Partha)

Nanophotonics and Capabilities (Norm)

Potential Impact and Early Results (Norm)

Some System Implications (Partha)

Low Power important in all markets

- from processors to data centers
- from handhelds to supercomputers

Se ter ber 11, 20

Large body of prior work

Today's talk

Integrated photonics

Disaggregated datacenters

Current Trends

Cores Per Die

Past

Present

Future

Speed Bumps on the Road to 2017

- Off-chip bandwidth requirements will scale geometrically
 - (Up to 10 TB/s)
- ITRS pin counts increase from a max of 3072 pins today to:
 - 3072 pins in 2017!
- On-chip bandwidths scale geometrically too
 - Interconnect power is a tougher constraint at each generation
 - Mesh and ring bandwidth and latency vary based on data placement
- Non-uniform latencies & bandwidth complicate programming
 - Programmer has to worry about placement of data & threads
 - Placement needs to change with each new chip
- ⇒We need a disruptive technology

Capabilities of Emerging Integrated Photonics

What are Integrated Photonics?

- The 2000 telecom bubble based on discrete optics
 - -Think pre-Noyce/Kilby era in electronics
 - -Components are measured in mm
 - Hand alignment
 - Expensive and not scalable

Source: Newport Corp.,
Assembly Magazine,
September 2001

- Think post-Noyce/Kilby era in electronics
- Components are measured in a few μm
- Manufacture many thousands per die
- Advances in lithography yield better devices

Important Technology Characteristics

Several things are important for a successful

technology, including:

-Gain (leading to fan-in and fan-out)

- Power efficiency
- Reference:

"The Physics of VLSI Systems" by Robert W. Keyes, 1987.

Gain

- Transistors have good gain
 - Electronics is good for computation
- Photons don't like to interact
 - Photonics is good for long distance communication
 - How long is long?
 - Depends on size -> capacitance -> power of device
 - mm devices: ~30 meters
 - μm devices: ~30 millimeters

Fan-in and Fan-out

- Important for efficient system design
 - -Not economically feasible at signaling rates >2Gbs in electrical systems due to stub problems
 - Possible in optics by using splitters and combiners
- Electrical point-to-point links do not scale well
 - Adds to pin bandwidth limitations
 - Repeated buffering of signals adds delay & power
 - FBDIMM example

ISLPED Keynote

FBDIMM Memory System

- Latency: Multi-hops
- Power: re-transmission
- Cost

Si Microrings

- Example: 5 cascaded microring resonators, slightly different radii ~ **1.5** μ**m**.
- □ High Q of **9,000** (BW ~ 20 GHz) and high extinction ratio of 16 dB.

Q. Xu, D. Fattal, and RGB, Opt. Express 16, 4309-4315 (2008) — World Record!

Si Ring Resonator in Action

Ring Resonators

One basic structure, 3 applications

- A modulator move in and out of resonance to modulate light on adjacent waveguide
- A switch transfers light between waveguides only when the resonator is tuned
- A wavelength specific detector add a doped junction to perform the receive function

Power Efficiency

- Hybrid actively mode-locked lasers or comb lasers
 - Produce all wavelengths from a single source
 - Track with temperature
- Si microring modulators
 - Parallel buses with clock forwarding (no SERDES)
 - DWDM: 256 waveguides \times 64 wavelengths each = 256 \times 64 Xbar
 - Analog drivers for both modulators and detectors (no A/D)
 - Femtofarad-class low-power receiverless detectors
- => Low power 10 Gb/s signaling

Potential Impact in 2017

The Corona Manifesto

Take full advantage of nanophotonics

- -Don't just replace today's wires with optics
- Redesign the multi-core processor from the ground up
- No off-chip or cross-chip electrical wires
- Restore balance: memory bandwidth scales with cores
- All memory readily reachable from all cores

Corona System Overview

10 teraflops compute performance10 terabytes/s memory bandwidth

20 terabytes/s on-chip interconnect

All off-socket and cross-socket communication is optical

Optically Connected Memory (OCM)

Optically Connected Memory

- Master/slave bus on waveguide loop
 - Optical power from processor
 - Processor modulates for data out
 - OCM modulates for return data
- Multiple optical interfaces per chip stack
 - Eliminates electronic global wiring
- OCMs communicate via DWDM
 - High bandwidth
- Accessed in parallel, no receive and retransmit like FBDIMM
 - Large capacities with low latency and power
- OCM only activates one DRAM mat per cache line fill/write
 - Less overfetching (in conventional DIMM 128X) → much lower power
- High bandwidth at low power

OCM Chip Stack

Corona Compute Socket

Corona Cluster Parameters

- Per each of 64 clusters:
 - Cores: 4
 - Memory controllers: 1
 - L2 cache: 4 MB, 16-way, 64B lines
- Per-core:
 - Frequency: 5 GHz
 - Threads: 4
 - L1 I-Cache: 16 KB, 4-way, 64B lines
 - L1 D-Cache: 32 KB, 4-way, 64B lines
 - Issue: 2-wide in-order
 - 64 b SIMD FP width 4 + Fused FP operations

Corona Chip Stack

On-chip Interconnect

The Optical Crossbar

All-optical Arbitration

- A single micro-ring both asserts request and detects success or failure
- Requester tries to divert one wavelength
 - Detected power: success/failure
- Off resonance micro-rings add no delay and negligible loss – > highly scalable
- Arbitration time is light propagation time
- DWDM -> many concurrent arbitrations

equivalent electronic circuit

Performance

- Compare 5 systems using:
 - Three different on-chip interconnects
 - Electrical 2D on-chip mesh, 0.64 TB/s and 5 cycle hops (LMesh)
 - Electrical 2D on-chip mesh, 1.28 TB/s and 5 cycle hops (HMesh)
 - Optical crossbar, 20.48 TB/s and 8 cycles total
 - Two different memory subsystems
 - Electrical 0.96 TB/s, 1536 signal pins, memory latency is 20 ns
 - Optical 10.24 TB/s, 256 fibers, memory latency is 20 ns
- Simulate using COTSon + M5
 - -4 synthetic benchmarks
 - SPLASH-2

Performance (LMesh/ECM = 1)

Applications that don't fit in cache show 4-6X improvements with Xbar

ISLPED Keynote

On-chip Network Power

Optics can reduce network power of aps that don't fit in cache by 6X

Optics Can Remove the Bottlenecks

- Bandwidth scales to 1,000 threads
 - 10 TB/s off-chip bandwidth
 - -20 TB/s bandwidth between cores
 - Modest power requirements
- Low, uniform latencies between cores & memory
- Coherent shared memory still possible

Near-term Technologies

Optical Buses

- Preview of upcoming Hot Interconnects presentation
 - "A High-Speed Optical Multi-drop Bus for Computer Interconnections," Mike Tan et. al.

Optical Multidrop Bus – A Master Slave Bus

- Replace electrical transmission line with optical waveguides
- Replace electrical stubs with optical taps
- Two Unidirectional buses: 12 bit wide @ 10Gb/s = 30GB/s
 - Master broadcasts to each module on the bus;
 - Distribute optical power equally among modules
 - Each module sends data back to the master at full bus bandwidth
- Lower latency with reduced power

 August 12, 2008 ISLPED Keynote

Optical Waveguide

- Hollow Metal Waveguides⁽¹⁾ (HMWG)
 - Low propagation loss light rays travel at near grazing angle to metal walls
 - Low numerical aperture
 - Prop delay 33psec/cm

Air core Ag clad (n, k) = (0.15+i 5.68) w = 150 μ m, h = 150 μ m α = 0.0015 dB/cm n_{eff} ~ 1 NA ~ 0.01

(1) E. Marcatili *et al., Bell Syst. Tech. J.* 43, 1783 (1964).

Optical Taps

- Non-Polarizing Pellicle Beam Splitters
 - -Low cost VCSELs randomly polarized
 - Negligible beam-walk off

1x8 Fanout

VCSEL driven from BERT thru bias-tee

Light input

1x8 Fanout @ 10.3125Gbps (L=30cm)

Optical Bus Summary

- Can build today
- Provides good fan-in and fan-out (>8)
- Distance not an issue
- Composite structures (e.g., crossbars) possible

Conclusions From Norm's Section

- Integrated photonics has the potential to:
 - Dramatically improve memory bandwidth
 - Significantly improve many-core performance
 - Reduce power
 - Simplify programming
 - All at the same time!
- Near term applications such as optical buses
 - Add significant system flexibility
 - -Save latency and power

Acknowledgements

- This includes contributions from many people:
 - All my ISCA 2008 coauthors
 - All my 2008 Hot Interconnects coauthors
- Special thanks for slide materials:
 - -Mike Tan, Ray Beausoleil, Moray McLaren, Nathan Binkert, Jung Ho Ahn, Qianfan Xu

Confluence of Optics and Other Systems Trends

multicores, virtualization, fabric convergence, non-volatile storage, manageability, power, resilience trends, volume/value blurring, web2.0 datacenters, SMB/BRIC, costs, flexibility, commodity....

Interesting opportunity to rethink system arch & mamt

Designing Future Servers & Datacenters

Proposal:

power-efficient building blocks co-designed across hardware/software dynamically shared & configured as ensembles as needed, when needed

Why?

One design: address power, m'gbility, scale, costs

Designing Future Servers & Datacenters

cost-efficient building blocks across hardware/software,

dynamically shared and configured at datacenter level

Several Interesting Research Directions

Rethink architecture
 [Beyond the "box" to the datacenter]

Rethink management
 [Beyond the "platform" to the solution]

E.g., Disaggregated systems

- Reduce memory power
- Enable non-volatile storage

E.g., "Dematerialized" systems

[Chandrakant Patel, Dematerializing the Ecosystem, Usenix08]

- Improved cable management
- Improved packaging efficiencies

Early results (for web2.0)

[isca2008]

Closing Remarks

- Integrated photonics had disruptive potential
 - Energy efficiency
 - -Improved bandwidth
 - Simpler programming
- Future systems implications
 - New architectures & flexibility (e.g., optical buses)
 - Disaggregation and dematerialization enablement

Closing Remarks

Integrated photonics

Disaggregated datacenters

