Next-Generation Power-Aware Design

Prof. Takayasu Sakurai
Institute of Industrial Science,
University of Tokyo
E-mail: tsakurai@iis.u-tokyo.ac.jp
We can help in two ways for “Cool Earth”

- Green of IT

- Green by IT
Next-Generation Power-Aware Design

- 3D integration
- Deep sub-volt design
- Organic integrated circuits (Green by IT)
Power distribution is diverse

Chart showing the distribution of logic, memory, and I/O for MPU1, MPU2, ASSP1, and ASSP2.
System-on-a-Chip reduces I/O power but...

Separate chips

Logic & memory

DRAM - logic interface

Power

DRAM on a chip

240mW

891mW

70% power reduction by DRAM embedding but expensive.

T.Sakurai
3D achieves low power and high performance with reasonable cost

2D assembly

More devices in closer vicinity

Reducing R and C

Lower power
Higher performance

Substrate < 20µm thick

3-D SiP

8 times more devices in 1mm distance

T. Sakurai
Stacked processor & cache by processor companies

Heat sink from back of processor

Processor, 1TFLOPS at 98W
22 mm x 13.75 mm
80 cores, face down
Each unit is core + router

Stacked memory
256KB SRAM per core
4x C4 bump density
8490 through-Si vias

Package

T.Sakurai
New contender – wireless link

Capacitive and inductive-coupling links
Wireless data links between stacked chips
No need for additional wafer process ➔ low cost
No need for ESD protection circuit ➔
high speed + low power

Metal Electrode
Capacitive-Coupling Link
U. Tokyo and Keio U., (ISSCC’03)

Metal Coil
Inductive-Coupling Link
Keio U. and U. Tokyo, (ISSCC’04)
How were we and how are we?

Inductive Wireless Superconnect
Connecting multiple chips

T. Sakurai
120µm coils couple through stacked chips

Transmitter (Top Chip)

Fabricated in 180nm CMOS

Top Chip
(40,25,10µm-Thick)

Distance=45,30,15µm

Receiver (Bottom Chip)

Bottom Chip

Voltage supply by bonding does not increase power nor decrease speed.

T. Sakurai
Just talk without waiting for clock - fast

<table>
<thead>
<tr>
<th>Circuit Topology</th>
<th>Keio U. / U. Tokyo (ISSCC’07)</th>
<th>Proposed Transceiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous front-end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Txclk</td>
<td>Pulse Generator</td>
<td>H-Bridge</td>
</tr>
<tr>
<td>Long Latency</td>
<td></td>
<td>VT</td>
</tr>
<tr>
<td>Rxclk</td>
<td>Timing Controller</td>
<td>Comparator</td>
</tr>
<tr>
<td>Asynchronous front-end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Txdata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rxdata</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Rate</th>
<th>1Gb/s</th>
<th>11Gb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency</td>
<td>600ps</td>
<td>36ps</td>
</tr>
<tr>
<td>Energy/bit</td>
<td>0.4pJ/b</td>
<td>1.4pJ/b</td>
</tr>
</tbody>
</table>

Simulated in 180nm CMOS

T.Sakurai
High-Speed Inductive-Coupling Link

Transmitter

Receiver

Txdata Txdata

Rxdata Rxdata

V_R V_B

I_T

1.5

0

-1.5

4

0

-4

100

0

-100

0.5

0

-0.5

0

0.5

1

1.5

Time [ns]

T.Sakurai
11Gbps over 15μm Measured

BER vs. Data Rate [Gb/s]

Communication Distance, X

Inductive-Coupling Link

Tx ↔ Rx

X = 15μm
X = 30μm
X = 45μm

T.Sakurai
Lower power solution in scaled CMOS

Multiple Use of Data Links with 400MHz System Clock

<table>
<thead>
<tr>
<th></th>
<th>180nm CMOS (Measured)</th>
<th>90nm CMOS (Simulated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td>11Gb/s</td>
<td>30Gb/s</td>
</tr>
<tr>
<td>Burst</td>
<td>6.4Gb/s</td>
<td>20.8Gb/s</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td>1.4pJ/b</td>
<td>0.11pJ/b ~0.03pJ/b @ 45nm</td>
</tr>
<tr>
<td>Burst</td>
<td>52.6pJ/b</td>
<td>11.2pJ/b</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel*</td>
<td>0.3mm² (16Links for 6.4Gb/s)</td>
<td>0.96mm² (52Links for 20.8Gb/s)</td>
</tr>
<tr>
<td>Burst</td>
<td>0.1mm² (2Links for 6.4Gb/s)</td>
<td>0.08mm² (2Links for 20.8Gb/s)</td>
</tr>
<tr>
<td>Area Reduction by Burst Transmission</td>
<td>1/3</td>
<td>1/12</td>
</tr>
</tbody>
</table>

*Multiple Use of Data Links with 400MHz System Clock

For TSV connection:

\[
E = PD = \frac{fCV^2}{f} = CV^2 \sim C \text{ (V\sim1)} = 0.03pJ/b \text{ (w/ ESD)}
\]

T.Sakurai
L-coupled link: low power contender

EMI? Near Field and Far Field

Communication Distance: x

Signal Frequency: f [Hz]

- Chip-link in SiP
- Near Field (Reactive)
- Far Field (Radiative)
- mm-Wave
- WLAN
- Cellular
- RFID (135kHz)
- RFID (13.56MHz)
- RFID (2.4MHz)
- FM

$f = \frac{c}{2\pi x}$, $x = \lambda/2\pi$

T. Sakurai
T.Sakurai

It’s not paradise: remaining issues for 3D SiP

- **KGD (Known Good Die)**
 At-speed testing of wafer, Wafer burn-in, Huge pin counts

- Heat removal and inspection of contacts
 Heat estimate, Testing by X-ray and ultrasonic

- Interposer
 Secure power distribution circuits, RLC testing

- Design environments
 EMC, Noise, Heat, 3D modeling, Simulation

- Standardization
 Protocol, Electrical, Physical, Testing, Logistics, Legal issues, 3D data handling

T.Sakurai
3D SiP house

Foundry A

Foundry B

Foundry C

Foundry may provide TSV service.

TSV / wireless

KGD test

Interposer, Assembly & test

KGD test

TSV by 3D SiP house is based on “Via-last”

3D SiP to system customer

T.Sakurai
Interposer to ensure design freedom

Foundry A
Foundry A
TSV’ed memory can be considered as one LSI product.

Assembly-specific
Re-distribution layer to adjust TSV location and material discrepancy among dies.

Foundry A or B
May experience separate shrink and multi-vendor supply.

Silicon/glass or organic depends on design rule (~10µm) and cost trade-off

T.Sakurai
Future power-aware 3D integration

Stacked memories

- Power unit
- Proc. unit
- Specialized blocks
- Sensors and information collecting circuits
- HV Power grid
- Stacked analog/RF, HV, sensors, MEMS...

Next-Generation Power-Aware Design

- 3D integration
- Deep sub-volt design
- Organic integrated circuits (Green by IT)
Ultra-low voltage domain

Normalized delay & power

Simulation (fitted to measurement)

Normalized PD product

Normalized delay & power

V_{DD} [V]

PD product

Power

Delay

Normalized PD product
Ring Oscillators to enable $V_{DD\min}$ Measurement

- V_{DD2}-V_{SS2} of output buffer is separated from V_{DD2}-V_{SS2} of ring oscillator, so that small swing output signal can be measured.

- NMOS/PMOS body bias voltage of ring oscillators can be tuned independently.

T. Sakurai
Fabricated Ring Oscillators (RO’s)

- 90nm CMOS process, based on standard cell library
- Three RO’s (11-stage, 101-stage and 1001-stage)
- More stages up to million gates in subsequent tapeout

$V_{DD_{min}}$ simulation

Diagram showing the behavior of V_{OUT} over time and the relationship between V_{OUT} and $V_{DD_{min}}$. The graph plots voltage (in mV) against time (in µs) over a simulation period.
V_{DD} Dependence of Oscillation Frequency

- $V_{DD\text{min}}$ is defined as the supply voltage when the RO's stop oscillation and no voltage transition from the output buffer are observed.
- $V_{DD\text{min}}$ of 11-stage ring oscillator is lower than that of 1001-stage ring oscillator.
Measured Die-to-Die (D2D) variations

Frequency variations increase with reduced V_{DD}.

- $\Delta f = \frac{\Delta t_{pd}}{t_{pd}} \frac{\alpha}{V_{DD} - V_{TH}} \Delta V_{TH}$
- $t_{pd} \propto \frac{C V_{DD}}{(V_{DD} - V_{TH})^\alpha}$
The spatial spectrum doesn’t show distinctive peaks at particular spatial frequencies, which indicates that the intra-die V_{TH} variations are not systematic but purely random across 4mm.

What’s happening at $V_{DD_{min}}$

$V_{DD}=85\text{mV}$

Fail

$V_{OUT_LOW_7} > V_{INV_8}$
Adaptive body bias to reduce V_{DDmin}

The body bias of pMOS is adaptively controlled to minimize V_{DDmin} and the body bias of nMOS is fixed.

When a common body bias is applied to the 11 inverters, V_{DDmin} improvement is only 2mV.
Fine-grained body bias to reduce $V_{DD\text{min}}$

- $V_{DD\text{min}} = 85$ mV
- $V_{DD\text{min}} = 43$ mV

When independent body bias is applied for every 2 inverters, $V_{DD\text{min}}$ improvement is only 4mV.

When inverter-by-inverter body bias is applied, $V_{DD\text{min}}$ is drastically reduced to 43mV. But it is impractical.

T. Sakurai
Worst-case distribution

Largest value distribution of n variables, each following Gaussian distribution

\[
f(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(x-x_0)^2}{2\sigma^2}}
\]

\[
\frac{d}{dx}\left(\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(y-x_0)^2}{2\sigma^2}} dy \right)^n
\]

SD \sim \frac{1}{(\log_10 n + 1)^{1.4} \sigma} = \frac{1}{(k+1)^{1.4} \sigma} (if \ n = 10^k)

peak \sim \bar{x} + 2\sqrt{k} \sigma (if \ n = 10^k)

\sim \bar{x} + 2\sqrt{\log_{10} n} \sigma
V_{DDmin} of million-stage ring oscillator

Center $V_{TH}=0.22V$

Model calculation

Worst case $\sim \bar{x} + 2\sqrt{\log_{10} n} \sigma$

T. Sakurai
Next-Generation Power-Aware Design

- 3D integration
- Deep sub-volt design
- Organic integrated circuits (Green by IT)
Frequently-mentioned features of organic IC’s

- **Advantages**
 - Low-cost manufacturing
 - Mechanical flexibility

- **Disadvantages**
 - Low speed (<10^{-3} of Si VLSI)
 - Low density (<10^{-4} of Si VLSI)
Cost consideration

- **Cost per function**
 (processors, memories, analog, ...)

- **Cost per area**
 (sensors, display, actuators, ...)

Organic

Si

Good for Green by IT

T. Sakurai
Unique manufacturing process: Printing large-area organic transistor array
Screen printing
Epoxy partitions

Courtesy of Professor Takao Someya, University of Tokyo
Inkjet printing

Gate electrodes & Word line

Gate electrodes: 45 x 45
Word line: 45 lines

28 x 28 cm²

3 mm
Organic transistors

Organic semiconductors: main elements --- C & H

Pentacene

Source
Gate
Drain

OFF

ON

Current

Voltage
Modeling by SPICE level1

L=100μm, W=2mm

V_{GS} =
-40V
-30V
-20V
-10V

I_{DS} [µA]

V_{DS} [V]

Measurement
Simulation

Level 1 SPICE
MOS model

SPICE & VLSI layout tool work.

T.Sakurai
Large-area electronics

Human-scale interfaces

E-skin

Sheet scanner

Braille display

Power sheet

Comm sheet

IEDM’03
IEDM’04
IEDM’05
IEDM’06
IEDM’07
ISSCC’04
ISSCC’05
ISSCC’06
ISSCC’07
ISSCC’08
Pressure sensors + OFETs
Actuators + OFETs
Photodetectors + OFETs
Coils + MEMS + OFETs
Organics + Si co-design

T. Sakurai

Large-area & high efficiency

Large coil
- 30x30 cm² x 1 coil
- Efficiency ~ 0.1%
- Electro-magnetic induction works

Receiver coil
- 1 inch²
- Efficiency > 60%
- Selective activation is the key.

Many coils
- & one selected

Receiver coil
- 1 inch²

1 inch² x 64 coils

T. Sakurai
Combination of MEMS and OFET

- Power transmission coils
- Plastic MEMS switches
 - Low loss
 - Slow ~ 0.1s
 - # of switching limited

- Position-sensing coils
- Organic FETs
 - Resistive
 - Faster < ms
 - # of switching unlimited

- Wireless power transmission system
- Contactless position-sensing system

21 x 21 cm² (8 x 8 cells)

T. Sakurai
MEMS switches

~ 5mm x 10mm

Electrode for power transmission

Electrode for electrostatic attraction
Wireless power transmission sheet

- Large-area & Low cost
- Contactless position sensing
- High power
- Lightweight & Printable

Size: 21 x 21 cm²
Thickness: 1 mm
Weight: 50 g
Efficiency: 62.3%
Max received power: 29.3 W
X’mas tree w/o a battery wirelessly powered

21 LEDs
13.56 MHz
Received power : 2 W
Demonstration of power transmission (Ubiquitous electronics)

In the wall
TV on a wall
Mobile phone & PC & e-accessories
(data can be wireless but USB’s wire delivers power)

In the table
Home-care robot
Vacuum cleaner

In the floor
Ambient illumination
No electrical shock

I touched it by my hand. No problem 😊
Next-Generation Power-Aware Design

- 3D integration
 Wireless link \((0.17 \text{pJ/b} \rightarrow 0.03 \text{pJ/b})\)
- Deep sub-volt design
 Watch out for random WID variation
- Organic integrated circuit
 Large-area electronics for Green by IT

All can help to realize COOL EARTH through “Green of IT” and “Green by IT”.

T.Sakurai