Starting 8:00 |
Registration in PHO 2nd floor |
|
08:00 – 08:30 |
Breakfast (PHO906) |
|
08:30 – 09:00 |
Welcome by General and Program Co-Chairs (PHO906) |
|
09:00 – 10:00 |
Keynote Talk 1: Dr Kaushik Roy, Purdue University, Enabling Energy-efficient Learning through Co-design of Algorithms and Hardware (PHO906) |
|
10:00 – 10:30 |
Coffee Break (PHO 2nd floor) |
|
10:30 – 11:45 |
Session 1 Energy-efficient and robust neural networks (PHO203) |
Session 2 Novel computing models (PHO205) |
12:00 – 13:30 |
Lunch (PHO906) |
|
13:30 – 14:45 |
Session 3 Efficient and intelligent memories (PHO203) |
Session 4 Circuit design and methodology for IoT applications (PHO205) |
14:45 – 15:15 |
Coffee Break (PHO 2nd floor) |
|
15:15 – 16:30 |
Special Session 1: Efficient and Automated Design of Future Intelligent Systems -- Speakers: Dr. Song Han and Dr. Jason Cong (PHO906) |
|
18:00-20:30 |
Reception at BU Castle |
Starting 8:00 |
Registration in PHO 2nd floor |
|
08:00 – 08:30 |
Breakfast (PHO906) |
|
08:30 – 09:00 |
Welcome by General and Program Co-Chairs |
|
Speaker Bio: Kaushik Roy is the Edward G. Tiedemann, Jr., Distinguished Professor of Electrical and Computer Engineering at Purdue University and Director of the Center for Brain-Inspired Computing (C-BRIC). He received his PhD from University of Illinois at Urbana-Champaign in 1990 and joined the Semiconductor Process and Design Center of Texas Instruments, Dallas, where he worked for three years on FPGA architecture development and low-power circuit design. His current research focuses on algorithms, circuits and architecture for energy-efficient cognitive computing, computing models and neuromorphic devices. Roy has supervised more than 85 PhD dissertations, and his students are well-placed in universities and industry. He is the co-author of “Low Power CMOS VLSI Design,” both the first and second editions, published by John Wiley & McGraw Hill.
Roy has received a National Science Foundation Career Development Award, IBM Faculty Partnership Award, ATT/Lucent Foundation Award, Semiconductor Research Corporation Technical Excellence Award, SRC Inventors Award, Purdue College of Engineering Research Excellence Award, Humboldt Research Award, IEEE Circuits and Systems Society Technical Achievement Award (Charles Desoer Award), Distinguished Alumnus Award from the Indian Institute of Technology, and the Semiconductor Research Corporation Aristotle Award in 2015. He also has served as a Department of Defense Vannevar Bush Faculty Fellow; Global Foundries Visiting Chair at National University of Singapore and Fulbright-Nehru Distinguished Chair.
Talk Abstract: Advances in machine learning, notably deep learning, have led computers to match or surpass human performance in several cognitive tasks including vision, speech and natural language processing. However, implementation of neural algorithms in conventional "von-Neumann" architectures are several orders of magnitude more area and power expensive than the biological brain. Hence, we need fundamentally new approaches to sustain the exponential growth in performance at high energy-efficiency. Exploring the new paradigm of computing necessitates a multi-disciplinary approach: exploration of new learning algorithms inspired from neuroscientific principles, developing network architectures best suited for such algorithms, new hardware techniques to achieve orders of improvement in energy consumption, and nanoscale devices that can closely mimic the neuronal and synaptic operations. In this talk, I will present recent developments on spike-based learning to achieve high energy efficiency with accuracy comparable to that of standard analog deep-learning techniques. Input coding from DVS cameras has been used to develop energy efficient hybrid SNN/ANN networks for optical flows, gesture recognition, and language translation. Complementary to the above device efforts, we are exploring different local/global learning algorithms including stochastic learning with one-bit synapses that greatly reduces the storage/bandwidth requirement while maintaining competitive accuracy, and adaptive online learning that efficiently utilizes the limited memory and resource constraints to learn new information without catastrophically forgetting already learnt data.
|
||
|
|
|
|
||
Examining the Robustness of Spiking Neural Networks on Non-ideal Memristive Crossbars (Best paper)
|
||
Identifying Efficient Dataflows for Spiking Neural Networks
|
||
Sparse Periodic Systolic Dataflow for Lowering Latency and Power Dissipation of Convolutional Neural Network Accelerators
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
QMLP: An Error-Tolerant Nonlinear Quantum MLP Architecture Using Parameterized Two-Qubit Gates |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Design and Logic Synthesis of a Scalable, Efficient Quantum Number Theoretic Transform
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A Charge Domain P-8T SRAM Compute-In-Memory with Low-Cost DAC/ADC for 4-Bit Input Processing
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FlexiDRAM: A Flexible in-DRAM Framework to Enable Parallel General-Purpose Computation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evolving Skyrmion Racetrack Memory as Energy-Efficient Last-Level Cache Devices
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Exploiting Successive Identical Words and Differences with Dynamic Bases for Effective Compression in Non-Volatile Memories |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors (Best paper)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A Bit-level Sparsity-aware SAR ADC with Activity-scaling for AIoT Applications
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Analysis of the Effect of Hot Carrier Injection in an Integrated Inductive Voltage Regulator |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Efficient Deep Learning Computing with Sparsity |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
Starting 8:15 |
Registration in PHO 2nd floor |
|
08:15 – 09:00 |
Breakfast (PHO906) |
|
09:00 – 10:00 |
Keynote Talk 2: Dr. Vijay Janapa Reddi, Harvard University, Tiny Machine Learning: A System-level Perspective (PHO906) |
|
10:00 – 10:30 |
Coffee Break (PHO 2nd floor) |
|
10:30 – 11:45 |
Session 5 Advances in hardware security (PHO203) |
Session 6 Novel physical design methodologies (PHO205) |
12:00 – 13:30 |
Lunch and Poster Session (PHO906) |
|
13:30 – 14:45 |
Session 7 Enablers for energy-efficient platforms (PHO203) |
Session 8 System design for energy-efficiency and resiliency (PHO205) |
14:45 – 15:15 |
Coffee Break (PHO 2nd floor) |
|
15:15 – 16:30 |
Special session 2: What's Next Beyond CMOS? -- Speakers: Dr. Massoud Pedram and Dr. Jing Li (PHO906) |
|
16:30 – 17:00 |
Awards and Closing Remarks (PHO906) |
Starting 8:15 |
Registration in PHO 2nd floor
|
|
08:15 – 09:00 |
Breakfast (PHO906) |
|
|
||
10:00 – 10:30 |
Coffee Break |
|
|
||
|
||
Security Implications of Energy Management in System-on-Chips
|
||
RACE: RISCV-based Unified Homomorphic Encryption/decryption ACcelerator on the Edge |
||
Sealer: In-SRAM AES for High-Performance and Low-Overhead Memory Encryption
|
||
|
||
Hier-3D: A Hierarchical Physical Design Methodology for Face-to-Face Bonded 3D ICs (Best paper)
|
||
A Study On Optimizing Pin Accessibility of Standard Cells in the Post-3 nm Node
|
||
Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis |
12:00 – 13:30: Lunch and Poster Session
|
|
1 |
CANOPY: A CNFET-based Process Variation Aware Systolic DNN Accelerator Cheng Chu, Dawen Xu, Ying Wang and Fan Chen |
2 |
Evaluation of Spiking Neural Networks Abinand Nallathambi, Sanchari Sen, Anand Raghunathan and Nitin Chandrachoodan, Layerwise Disaggregated |
3 |
Tightly Linking 3D via Allocation towards Routing Optimization for Monolithic 3D ICs Suwan Kim, Sehyeon Chung, Taewhan Kim and Heechun Park |
4 |
Enabling Capsule Networks at the Edge through Approximate Softmax and Squash Operations Alberto Marchisio, Beatrice Bussolino, Edoardo Salvati, Maurizio Martina, Guido Masera and Muhammad Shafique |
5 |
Multi-Complexity-Loss DNAS for Energy-Efficient and Memory-Constrained Deep Neural Networks Matteo Risso, Alessio Burrello, Luca Benini, Enrico Macii, Massimo Poncino and Daniele Jahier Pagliari |
6 |
Visible Light Synchronization for Time-Slotted Energy-Aware Transiently-Powered Communication Alessandro Torrisi, Maria Doglioni, Kasim Sinan Yildirim and Davide Brunelli |
7 |
Directed Acyclic Graph-based Neural Networks for Tunable Low-Power Computer Vision |
8 |
Energy Efficient Cache Design with Piezoelectric FETs Reena Elangovan, Ashish Ranjan, Niharika Thakuria, Sumeet Gupta and Anand Raghunathan |
9 |
Predictive Model Attack for Embedded FPGA Logic Locking Prattay Chowdhury, Chaitali Sathe and Benjamin Carrion Schaefer |
10 |
(Design Contest Poster) A Low-Power Deep Learning-Based Dense RGB-D Data Acquisition with Sensor Fusion and 3-D Perception SoC Dongseok Im, Gwangtae Park, Zhiyong Li, Junha Ryu, Sanghoon Kang, Donghyeon Han, Jinsu Lee, Wonhoon Park, Hankyul Kwon, Hoi-Jun Yoo |
11 |
(Design Contest Poster) Making Lane Detection Efficient for Autonomous Model Cars Anthony Song, Riley Francis, Kanishk Tihaiya, Jiangwei Wang, Shanglin Zhou, Fei Miao, Caiwen Ding |
13:30 – 14:45: Session 7 Enablers for energy-efficient platforms |
|
Neural Contextual Bandits Based Dynamic Sensor Selection for Low-Power Body-Area Networks |
|
3D IC Tier Partitioning of Memory Macros: PPA vs. Thermal Tradeoffs
|
|
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications |
|
|
SACS: A Self-Adaptive Checkpointing Strategy for Microkernel-Based Intermittent Systems
Yen-Ting Chen, Han-Xiang Liu, Yuan-Hao Chang, Yu-Pei Liang and Wei-Kuan Shih
|
|
Drift-tolerant Coding to Enhance the Energy Efficiency of Multi-Level-Cell Phase-Change Memory |
|
A Unified Forward Error Correction Accelerator for Multi-Mode Turbo, LDPC, and Polar Decoding
|
|
|
14:45 – 15:15 |
Coffee Break |
|
|
|
|
Design Methodologies, Circuits, and Architectures for Superconductor Electronic Systems
|
|
Liquid Silicon: A Decade Journey on Memory Centric Computing
|
|
|
|
|
|
16:30 – 17:00 |
Awards and Closing Remarks |
|